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Abstract

Using Model Reference Adaptive Control

to Mitigate Ground Effect On A Mini Quadcopter

In this thesis, a study of ground effects on a quadrotor aerial vehicle was presented.

Experimental results showed that thrust generated by the rotors increased linearly as the

vehicle got closer to the ground, which was different from the single rotor vehicle’s ground

effect model used in other research. Furthermore, a quadcopter experienced ground effects

sooner than the single rotor model predicted, and the ground effect was weaker when the

vehicle was at close proximity to the ground. Then, a control architecture that utilizes

a model reference adaptive controller was proposed to mitigate ground effect. Different

position controllers were implemented on a physical system, which included a Crazyflie

2.0 and a computer. The controllers used in this study included a PID controller, a

model reference adaptive controller (MRAC) with a linear ground effect model, and a

MRAC that uses a set of radial basis functions (RBF), plus a bias term to approximate

the ground effect function. The quadcopter took off and landed within the ground effect

region multiple times, and its performances were compared. From the flight tests, the

MRACs outperformed the PID controller. Among the MRACs, the one with RBF tracked

the reference model better with less mean square error. It also responded quicker with

less rise time. Furthermore, the MRAC with RBF performed more consistently compared

to the one using linear ground effect model.

-viii-
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Chapter 1

Introduction

1.1 Motivation

Multirotor aerial vehicles have become increasingly popular over the past decade due to

their high maneuverability and vertical takeoff capability. We have seen these vehicles in

our daily life, from indoor hobby flying to outdoor professional photography, which are

shown in Table 1.1. Recently, there are growing interests in using multirotor vehicles for

low-altitude high risk applications. Dubai Police plans to purchase a hoverbike, which

was developed by a Russian company called Hoversurf, to use as a patrol car[3]. Alec,

from Delft University of Technology, delivers a defibrillator to patients in needed using a

tricopter[4]. Researchers from Pontifical Xavierian University put a multispectral camera

on a quadcopter for Multispectral mapping in agriculture[5]. These vehicles operate at

low altitude, where the efficiency of the rotor system increases due to ground effect[6]. As

a result, less power is needed when the vehicle is at close proximity to ground. However,

ground effect varies significantly in flight due to several factors, including distance from

ground, type of ground, and vehicle’s speed. Extreme caution must be taken when oper-

ating within ground effect region, otherwise, there is little time for recovery operation due

to proximity to ground, and the vehicle can crash to the ground. Therefore, a better un-

derstanding about ground effect is needed for multirotor vehicles, and we need a controller

that can deal with ground effect in the whole flight profile. If not, accidents can happen

that will cause property damage or even result in loss of life. Looking back in history, there

1
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are a lot of accidents due to ground effect, from incidents to fatal accidents[7][8][9][10][11],

and we should learn from our mistakes. However, there are shortcomings with current

technology.

Table 1.1: Left: mini hexcopter for indoor flying (the coin is a size reference), Right: DJI
Phantom 4 with HD camera for photography[2]

1.2 State of the Art

1.2.1 UAV Control

Proportional-integral-derivative (PID) controllers have been widely used in rotorcraft con-

trol due to its versatility and facile implementation. PID controllers were used to sta-

bilize a multirotor aerial platform equipped with a overhanging robotic arm[13]. Other

researchers used a PID controller to control the motors’ speed on a quadcopter with

high precision, which resulted in better performace[14][15]. Another study used two

proportional-integral (PI) controllers (Euler angle controllers and angular rate controller)

to provide attitude control of a quadcopter with external disturbances[17]. At this point,

research on multirotor aerial vehicles mainly focuses on simple tasks, such as stabilization

when the vehicle is stationary or moving at low speed. As interest in multirotor vehicles

grows due to its unique capability, new applications are proposed that require trajectory

following and aggressive maneuverability. These requirements give rise to multilayer con-

trol architecture and nonlinear control due to the vehicle’s nonlinear nature. Researchers

utilized the flatness property of multirotor vehicles and implemented a nonlinear feedfor-

ward controller in a hexacopter[18], which allowed the vehicle to follow complicated paths,

including a figure eight-like trajectory and a circular path. Other researchers proposed a

2
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nonlinear controller called “discrete-time one-step ahead prediction control” to deal with

system nonlinearity and actuator constraints[19]. Other researchers implemented a non-

linear backstepping controller with integral action in a multirotor aerial vehicle to stabilize

a suspended payload[20]. In experiments, the controller tracked a figure eight-like trajec-

tory well under wind condition. Although these controllers perform really well in designed

conditions, they suffer performance loss in the presence of parametric uncertainty. These

controllers have constant gains which are designed for certain conditions.

1.2.2 Adaptive Control for UAV

As new applications emerge, plant variation becomes an issue, which brings renewed in-

terest in adaptive control techniques. Adaptive control is able to handle uncertainties,

because its gains vary in-flight according to an adaptive law. A quadcopter that used

a linear proportional-derivative (PD) cascade controller was destabilized by changing its

center of gravity (CoG), which is crucial to package delivery using unmanned aerial vehi-

cles (UAV)[21]. The authors proposed an adaptive tracking controller, which was based

on output feedback linearization, to solve the problem and proved that the controller

provided great tracking performance with CoG shifted in flight. On the other hand,

researchers focused on altitude control for quadcopters, where changes in mass greatly re-

duced the system performance[22]. The authors implemented a model reference adaptive

control (MRAC) based on a simplified model to assist an existing PI heave-velocity sta-

bilizer, and showed that the proposed controller was able to retain its performance when

the mass of a quadcopter changed in flight. Another study used a nonlinear H∞ controller

with the assistance of a model predictive controller to solve path following problem. The

authors proved that the controller is robust to external disturbance on all six degrees

of freedom with structural and parametric uncertainties[23]. The optimal path tracking

problem was solved by using linear quadratic tracking (LQT) algorithm, which is similar

to LQR but its gains vary in time[24]. It is robust to model uncertainty and external

disturbance, but it required matrix inversion, which is computationally heavy.

3
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Figure 1.1: Soviet Ekranoplan, a ground effect vehicle that flies a few meters above the
surface[1]

1.2.3 Ground effect for UAV

Ground effect increases the efficiency of the rotor system when the vehicle operates near

the ground or other flat surfaces. This is caused by interference of the airflow by the flat

surface, which decreases the downward velocity of air and reduces the induced drag[6].

In other word, vehicles that operate within ground effect require less power to hover.

However, extra caution is needed when entering or exiting ground effect zone, otherwise,

the sudden change in thrust can result in a fatal accident. Due to its potential benefits

and dangers, ground effect on aerial vehicles is a widely studied topic. For example,

mathematical models of ground effect have been developed for fixed wing aircraft[26] and

helicopters[27][28][29][30]. Also, vehicles that take advantage of ground effect have been

developed, such as the Soviet Ekranoplan shown in Figure 1.1. However, ground effect

research for multirotor vehicles is limited[31][32], and they used the ground effect model

for single rotor vehicle from[30], which is shown in Equation 1.1. Although experiments

showed that the single rotor model predict the general trend for thrust in ground effect,

detail was lacking[31].
F

F0

=
1

1− R2

16Z2

(1.1)

where F is the thrust when the vehicle is under ground effect, F0 is the thrust without

the ground effect, R is the radius of the propeller, and Z is the distance from the flat

surface.

4
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1.3 Goal

In this paper, I would like to address the issues listed in the previous sections by combining

PID, LQR, and MRAC to mitigate ground when a multirotor aerial vehicle approaches

the ground, such as takeoff and landing.

1.4 Methods

First, a ground effect model for quadcopters is obtained using experiments. Then, a set of

nonlinear dynamic equations for quadcopters are derived using Newton-Euler equations

and are linearized at hovering state. Attitude and position controller are designed using

linear control method: LQR technique and PID method. A model reference adaptive

controller is added to altitude loop to handle ground effect. Lastly, these controllers are

implemented to the system, which consists of a mini quadcopter called Crazyflie 2.0, which

is developed by Bitcraze, and a computer as a ground station. Flight tests are performed

to evaluate the proposed control architecture when dealing with ground effect.

5
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Chapter 2

System Model

In this section, the hardware platform used, Crazyflie 2.0 developed by Bitcraze, is intro-

duced first. Then, the reference frames used in this paper are defined. Lastly, a derivation

of the rigid body dynamic model of the Crazyflie UAV is provided using Newton-Euler

equations.

Figure 2.1: A Crazyflie 2.0 with IR reflective markers. M1, M2, M3, and M4 are the
names of the motor, and the yellow arrows show the spinning direction for each motor.

2.1 Crazyflie 2.0

The Crazyflie 2.0 from Bitcraze is a mini versatile flying platform, which weighs only 27

grams. Due to its size and open source development kit, it is a great platform to test

6
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new control algorithm in indoor environment. In this paper, a modified Crazyflie is used

as shown in Figure 2.1. From the figure, the sliver spheres are reflective markers, which

are used by motion capture systems called Optitrack, to track object’s local position

and orientation. The reflective markers are attached to a Crazyflie through a specially

designed frame.

Figure 2.2: A 3D model of the modified Crazyflie, which includes IR reflective markers
for motion capture system to track the vehicle. L is the distance from rotor to center line

2.1.1 Parameters

To determine the system mass and inertia, a 3D model was constructed using SolidWorks

(a 3D CAD software). First, the system was taken apart and the weights of each part

were recorded. Then, each piece was modeled as simple shapes (like a block or sphere)

with the recorded mass in CAD software. Lastly, the pieces were assembled together to

create a completed 3D model of the modified Crazyflie, which is shown in Figure 2.2.

Using SolidWork’s toolbox, mass and moment of inertia were calculated, and they are

listed in Table 2.1.

Motor constants, kf and km, define how much thrust/moment a motor generates for

a given PWM signal. γ and km are obtained from [33], while an experiment is performed

to find kf . To determine kf , a Crazyflie is placed inversely on top of a scale, as shown

in Figure 2.3. Then, the throttle is increased from 0% to 100% in an increment of 10%.

The corresponding motor signal (pulse-width modulation signal, PWM) and thrust are

recorded, which is shown in Figure 2.4. Then, a linear model is fitted to the data to relate

7
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Table 2.1: Crazyflie 2.0 Parameters

Parameters Description Value

m Mass with markers and frame 0.3812 kg

L Distance from rotor to center line 0.035 m

Ixx Moment of inertia along x-axis 2.661× 10−5 kg-m2

Iyy Moment of inertia along y-axis 2.858× 10−5 kg-m2

Izz Moment of inertia along z-axis 5.799× 10−5 kg-m2

kf Motor force constant, F = kf × PWM 2.083× 10−6 N

km Motor moment constant, M = km × PWM 7.707× 10−9 N -m

γ Motor constant ratio, γ = km/kf 3.700× 10−3 N -m/N

PWM signal to thrust, and the result is shown in Equation (2.1). Lastly, the slope of the

line is defined as motor’s force constant, kf .

Figure 2.3: A thrust measurement test rig

y = 2.083× 10−6x− 0.00396 (2.1)

where x is PWM signal and y is thrust (N).

8
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Figure 2.4: Thrust curve

2.1.2 Thrust and moments

Let m1, m2, m3, m4, represent PWM control signals for motor 1, 2, 3, 4 respectively,

and u1 be the total thrust from all motors [N ]. u1 is described in Equation (2.2) using

kf . Noted that, pointing upward is negative, which is discussed in the following section,

Reference Frame.

u1 = kf

[
−1 −1 −1 −1

]

m1

m2

m3

m4

 (2.2)

Then, u2x, u2y, u2z are defined as rolling, pitching, yawing moment respectively [N−m].

Rolling and pitching moments are caused by thrust differences from different motors

(front vs back pairs and left vs right side) multiplied by a moment arm (L), while yawing

moment is caused by different torque from motors (clockwise vs counter-clockwise). The

9
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relationships are described in Equation (2.3) using kf and γ = km/kf .


u2x

u2y

u2z

 = kf


−L −L L L

L −L −L L

γ −γ γ −γ



m1

m2

m3

m4

 (2.3)

2.2 Reference Frame

2.2.1 Inertial Frame

A conventional right hand Cartesian coordinate system is used, where z-axis points down-

ward. The origin of the inertial frame is defined as the center of the laboratory, and the

inertial frame is fixed on the ground. As shown in Figure 2.5, the unit vector Xe points

to the east wall, Ye points to the south wall, and Ze points to the ground.

Figure 2.5: Inertial frame

2.2.2 Vehicle Frame

The vehicle frame’s origin is located at the center of mass of the quadcopter, while its

axes are aligned with the inertial frame.

10
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2.2.3 Body Frame

The body frame has the same origin as the vehicle frame, but its unit vectors aligned

with the vehicle’s forward direction as shown in Figure 2.6. Xb points to the front of the

vehicle, Yb points to the right, and Zb points downward.

Figure 2.6: Reference Frame

2.2.4 Tait-Bryan Angles

To rotate from vehicle frame to body frame, three rotations are involved, and its angles

are commonly known as Tait-Bryan angles: roll (φ), pitch (θ), and yaw (ψ).

Vehicle-1 Frame

From vehicle frame, rotate in the positive right-handed direction about Zv by ψ and get

to vehicle-1 frame. The transformation from the vehicle frame to the vehicle-1 frame is

given by

pppv1 = Rv1
v (ψ)pppv

where

Rv1
v (ψ) =


cψ sψ 0

−sψ cψ 0

0 0 1


Vehicle-2 Frame

Then, rotate in the positive right-handed direction about Y1 by θ to vehicle-2 frame, which

is described by the following equation.

pppv2 = Rv2
v1 (θ)pppv1

11
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where

Rv2
v1 (θ) =


cθ 0 −sθ
0 1 0

sθ 0 cθ


Body Frame

Lastly, rotate in the positive right-hand direction about X2 by φ to body frame, and the

transformation is given by

pppb = Rb
v2 (φ)pppv2

where

Rb
v2 (φ) =


1 0 0

0 cφ sφ

0 −sφ cφ


By combining the rotation matrics from previous sections in the correct order, the

transformation from vehicle frame to body frame is given as follow.

Rb
v (φ, θ, ψ) = Rb

v2 (φ)Rv2
v1 (θ)Rv1

v (ψ) (2.4)

=


1 0 0

0 cφ sφ

0 −sφ cφ



cθ 0 −sθ
0 1 0

sθ 0 cθ



cψ sψ 0

−sψ cψ 0

0 0 1

 (2.5)

=


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 (2.6)

(2.7)

Similarly, the rotation matrix from body frame to vehicle frame is
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Rv
b (φ, θ, ψ) = Rb

v (φ, θ, ψ)T (2.8)

=


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (2.9)

(2.10)

The relationship between each reference frame can be summarized in Figure 2.7.

Figure 2.7: The relationship between each reference frames

Tait-Bryan Angular Rates and Body Axis Rates

From Figure 2.7, it is obvious that yaw rate is in the vehicle-1 frame, pitch rate is in

the vehicle-2 frame, and roll rate is in body frame. Therefore, the transformation from

Tait-Bryan angular rates (φ̇, θ̇, ψ̇) to body axis rate, ωωωb is given by the following.

For yaw rate (ψ̇), it is in vehicle-1 frame, so it is rotated to vehicle-2 frame first and

then body frame. It is described with the equation below.

ωωωb = Rb
v1 (φ, θ)


0

0

ψ̇

 (2.11)

where

Rb
v1 (φ, θ) = Rb

v2 (φ)Rv2
v1 (θ)

Similarly, pitch rate (θ̇), is in vehicle-2 frame. Thus, a single rotation brings it to body

13
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frame.

ωωωb = Rb
v2 (φ)


0

θ̇

0

 (2.12)

Lastly, a rotation is not needed for roll rate (φ̇) since it is already in the body frame.

ωωωb =


1 0 0

0 0 0

0 0 0



φ̇

0

0

 (2.13)

By combining Equation (2.11), (2.12), and (2.13), the transformation from Tait-Bryan

angular rates to body axis rates can be represented as the following.

ωωωb = Rb
φ̇,θ̇,ψ̇


φ̇

θ̇

ψ̇

 (2.14)

where

Rb
φ̇,θ̇,ψ̇

=


1 0 0

0 0 0

0 0 0

+Rroll


0 0 0

0 1 0

0 0 0

+RrollRpitch


0 0 0

0 0 0

0 0 1

 (2.15)

=


1 0 − sin (θ)

0 cos (φ) sin (φ) cos (θ)

0 − sin (φ) cos (φ) sin (θ)

 (2.16)

Similarly, the rotation matrix from body axis rates to Tait-Bryan angular rates is

Rφ̇,θ̇,ψ̇
b =

(
Rb
φ̇,θ̇,ψ̇

)T
(2.17)

=


1 sin (φ) tan (θ) cos (φ) tan (θ)

0 cos (φ) − sin (φ)

0 sin (φ)
cos (θ)

cos (φ)
cos (θ)

 (2.18)
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2.3 Equations of Motion

2.3.1 Nonlinear equations

Let F [N ] denote the forces acting on the vehicle in Earth frame, m [kg] denote the mass

of the vehicle, a [m/s2] denote the vehicle’s acceleration in Earth frame, and M [N -m]

denote the moments acting on the vehicle in body frame. Using Newton-Euler equations,

the following equations are obtained:

FFF = mv̇̇v̇v (2.19)

MMM = Iω̇̇ω̇ω +ωωω × Iωωω (2.20)

In Equation (2.19), FFF are the external forces acting on the vehicle, which include

gravity, g, in vehicle frame and total motor thrust, u1, in the body frame. By transforming

u1 from body frame to vehicle frame, the equation becomes
v̇x

v̇y

v̇z

 =


0

0

g

+
1

m
Rv
b


0

0

u1

 (2.21)

Combining the equation above with Equation (2.9), it becomes
v̇x

v̇y

v̇z

 =


0

0

g

+
1

m


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ




0

0

u1

 (2.22)

=
1

m


u1 (cos (φ) sin (θ) cos (ψ) + sin (φ) sin (ψ))

u1 (cos (φ) sin (θ) sin (ψ)− sin (φ) cos (ψ))

mg + u1 (cos (φ) cos (θ))

 (2.23)

In Equation (2.20), MMM represents the external moments acting on the vehicle, which

includes rolling moment, u2x, pitching moment, u2y, and yawing moment, u2z. To keep
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things simple, a symmetrical body is assumed, such that the cross product terms in

moment of inertia, I, are zeros. The following equations are obtained.
ṗ

q̇

ṙ

 =


1
Ixx

(Iyy − Izz) qr
1
Iyy

(Izz − Ixx) pr
1
Izz

(Ixx − Iyy) pq

+


1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz



u2x

u2y

u2z

 (2.24)

To obtain equations of motion in terms of motor control signals (PWM), Equation

(2.2) and (2.3) are substituted into Equation (2.23) and (2.24) respectively, which results

in the following equations.

1) Forces 
v̇x

v̇y

v̇z

 =
1

m


u1 (cos (φ) sin (θ) cos (ψ) + sin (φ) sin (ψ))

u1 (cos (φ) sin (θ) sin (ψ)− sin (φ) cos (ψ))

mg + u1 (cos (φ) cos (θ))

 (2.25)

2) Moments


ṗ

q̇

ṙ

 =


1
Ixx

(Iyy − Izz) qr
1
Iyy

(Izz − Ixx) pr
1
Izz

(Ixx − Iyy) pq

+ kf


1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz



−L −L L L

L −L −L L

γ −γ γ −γ



m1

m2

m3

m4

 (2.26)

=


1
Ixx

(Iyy − Izz) qr
1
Iyy

(Izz − Ixx) pr
1
Izz

(Ixx − Iyy) pq

+


kf
Ixx

(−Lm1 − Lm2 + Lm3 + Lm4)

kf
Iyy

(Lm1 − Lm2 − Lm3 + Lm4)

kf
Izz

(γm1 − γm2 + γm3 − γm4)

 (2.27)

Equation (2.25) is in terms of angles, φ, θ, ψ, while Equation (2.27) is in terms of Body

axis angles, p, q, r. Therefore, a third set of equations is needed to relate angles and body

axis angles, which is Equation (2.18). A summary of nonlinear equations of motion is

shown in Table 2.2.
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Table 2.2: Summary: Nonlinear Equation of Motion

Forces:


v̇x

v̇y

v̇z

 = 1
m


u1 (cos (φ) sin (θ) cos (ψ) + sin (φ) sin (ψ))

u1 (cos (φ) sin (θ) sin (ψ)− sin (φ) cos (ψ))

mg + u1 (cos (φ) cos (θ))



Moments:


ṗ

q̇

ṙ

 =


1
Ixx

(Iyy − Izz) qr
1
Iyy

(Izz − Ixx) pr
1
Izz

(Ixx − Iyy) pq

+


kf
Ixx

(−Lm1 − Lm2 + Lm3 + Lm4)

kf
Iyy

(Lm1 − Lm2 − Lm3 + Lm4)

kf
Izz

(γm1 − γm2 + γm3 − γm4)



Rotation:


φ̇

θ̇

ψ̇

 =


1 sin (φ) tan (θ) cos (φ) tan (θ)

0 cos (φ) − sin (φ)

0 sin (φ)
cos (θ)

cos (φ)
cos (θ)



p

q

r



Kinematic


ẋ

ẏ

ż

 =
[
13×3

]
vx

vy

vz


2.3.2 Linearization

The nonlinear differential equations in Table 2.2 are linearized about hovering state, which

results in a linear system of equations with 12 states, xxx, and 4 inputs, uuu.

Consider that a system of nonlinear first order differential equation as

ẋ̇ẋx = fff (xxx,uuu)

Then, the linearized system will be

ẋ̇ẋx = Axxx+Buuu

where

A =
∂fff

∂xxx

∣∣∣
xtrimxtrimxtrim,utrimutrimutrim

B =
∂fff

∂uuu

∣∣∣
xtrimxtrimxtrim,utrimutrimutrim

Using Sympy[34], a symbolic math Python library, the following equations are ob-

tained. Noted that the position and attitude dynamics are decoupled.
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State vector: xxx =
[
p q r φ θ ψ

]T
Input vector: uuu =

[
m1 m2 m3 m4

]T
Trim States : xtrimxtrimxtrim =

[
0 0 0 0 0 ψ0

]T
Trim Inputs : utrimutrimutrim = mg

4
1
kf

[
1 1 1 1

]T
2.3.2.1 Attitude Dynamics

ṗ

q̇

ṙ

φ̇

θ̇

ψ̇


=

03×3 03×3

13×3 03×3





p

q

r

φ

θ

ψ


+


− Lkf

4Ixx
− Lkf

4Ixx

Lkf
4Ixx

Lkf
4Ixx

Lkf
4Iyy

− Lkf
4Iyy

− Lkf
4Iyy

Lkf
4Iyy

γkf
4Izz

− γkf
4Izz

γkf
4Izz

− γkf
4Izz



m1

m2

m3

m4

 (2.28)

Note: 03×3 is a 3× 3 zero matrix and 13×3 is a 3× 3 identity matrix.

2.3.2.2 Position Dynamics

State vector: xxx =
[
x y z vx vy vz

]T
Input vector: uuu =

[
φ θ u1

]T
Trim States : xtrimxtrimxtrim =

[
x0 y0 z0 0 0 0

]T
Trim Inputs : utrimutrimutrim = mg

kf

[
0 0 1

]T


ẋ

ẏ

ż

v̇x

v̇y

v̇z


=

03×3 13×3

03×3 03×3





x

y

z

vx

vy

vz


+



0 0 0

0 0 0

0 0 0

−g sin (ψ0) −g cos (ψ0) 0

g cos (ψ0) −g sin (ψ0) 0

0 0 1
m




φ

θ

u1

 (2.29)

Note: 03×3 is a 3× 3 zero matrix and 13×3 is a 3× 3 identity matrix.
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2.4 Matlab Simulation

A Matlab SimulinkTM block diagram model, shown in Figure 2.8, is created using the

equations and system parameters in the previous sections. The block diagram model

includes two controllers (position and attitude), a vehicle model, a sensor block, and

a state estimator. The vehicle model uses nonlinear dynamic equations discussed in

previous sections and next chapter to emulate Crazyflie. The model accepts the motors’

PWM control signal and outputs system states. Then, the sensor block models the inertial

measurement unit on-board the Crazyflie, which converts true states from vehicle model

to position, accelerations, and angular rate and injects noise to the signals. Lastly, the

states estimator takes sensor’s measurement and estimates the system states. A simple

complementary filter is used because it is implemented in Crazyflie’s stock firmware. This

Simulink block model is used in Chapter 4 to tune controllers.
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Chapter 3

Ground Effects

To compensate for ground effects in controller design, an understanding of ground effect

is desired. In this case, I am interested in how the total thrust varies when a quadcopter

is at close proximity to the ground. From [31], the proposed model for a quadcopter with

zero forward speed is shown as Equation 1.1. However, a validation is needed, and a

ground test is proposed due to its simplicity; several assumptions are made to emulate

in-flight condition.

1. Ground effect is affected mainly by the distance from ground, not vehicle’s vertical

velocity. Therefore, testing done statically on ground will have the same result as

tests done dynamically in-flight.

2. Small objects placed at the center of the quadcopter have minimal affect on air flow,

since it is away from the rotors.

To measure the thrust generated by the rotors, the quadcopter is placed upside down

on a scale with a support as shown in Figure 3.1. The support elevates the quadcopter

from the scale by three times the diameter of its rotor, such that intake air flows freely

without interference. Then, the scale is placed on a flat platform, where an ultrasonic

sensor is attached. The ultrasonic sensor measures distance from the platform to the

“ground”. Then, the sensor is connected to a microcontroller for data collection and

filtering. The test rig is shown in Figure 3.1. Lastly, the test rig is placed under a long

flat table and atop of a platform jack as shown in Figure 3.2. The long table emulates
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the “ground”, and measurement of ground effect at different height is done by adjusting

the platform jack.

Figure 3.1: Left: a 3-D model for the support, Right: a ground effect test platform

Ground

Table
(Reference Ground)

Platform

Scale
Support

Crazyflie

Ultrasonic

Platform Jack

Figure 3.2: Ground effect experiment

3.1 Experimental Method

Before the experiment begins, the calibration of the ultrasonic sensor is carried out, and

its setup is shown in Figure 3.3. Then, the ground effect experiment begins. The steps
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Table

Measurement Tape

Sensor

Block

Figure 3.3: Ultrasonic sensor calibration

taken during the calibration and experiment are listed below.

1. Ultrasonic sensor calibration

(a) Place a flat object 10cm away from the sensor using the measurement tape.

(Note: the minimum distance for the sensor is 5cm).

(b) Record the tape measurement and ultrasonic sensor reading.

(c) Repeat Step a - b at an increment of 2cm until 30cm away from the sensor.

2. Ground effect measurements

(a) Make sure the Crazyflie is fully charged

(b) Place the test rig in place and zero the scale reading

(c) Turn the knob on the platform jack to raise the test platform until the Crazyflie

slightly touchs the table.
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(d) Check if the scale still reads zero. If not, lower the platform jack.

(e) Set the throttle to a desired PWM value (around 10000 out of 65536) and check

if the propellers are spinning.

(Note: If the throttle is too high, it will drain the battery out before the

experiment ends.)

(f) Record the thrust measured by the scale, (F ), and the distance with ultrasonic

sensor, (Zsensor).

(g) Turn the knob on the platform jack to lower the test platform.

(h) Repeat Step (e) - (g) at an increment 1cm until the distance is 20cm.

(i) Carefully relocate the test platform to a new location such that nothing blocks

the intake air flow of the rotors.

(j) Record the scale’s reading, which is the thrust outside ground effect (F0).

(k) Repeat Step (a) - (j) for the quadcopter with two rotors (motor 1 and 3) active

and four rotors active.

3.2 Method

Three sets of data are collected during the experiments: 1) thrust in ground effect region

as F , 2) distance from the test platform to the “ground” as Zsensor, and 3) thrust out of

ground effect region as F0. First, sensor reading, Zsensor, is converted to distance [cm],

Zactual, using Equation (3.1), which comes from ultrasonic sensor calibration process.

Then, Zactual is subtracted by the distance between the ultrasonic sensor to the Crazyflie’s

rotors, which is a fixed distance, to get the distance from the rotors to the table, Z. Then,

F/F0 and Z/R are computed to compare different configuration, where R is the radius

of the rotor. Lastly, a model is fitted to the data from each trial using the least square

method, and the data from other trials are used to compute the square of residuals, which

is defined as (ymodel − yexperiment)2. The model that has the least residual is selected to

prevent over-fitting.
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3.3 Analysis

3.3.1 Calibration

The data collected during calibration is plotted in Figure 3.4, shown as blue dots. x is

reading from ultrasonic sensor, and y is the tape measurement. A line is fitted to the

data and its equation is shown in Equation (3.1).

y = 0.9874x+ 1.5795 (3.1)

Figure 3.4: Ultrasonic sensor calibration curve

3.3.2 Ground Test

Using the data from the experiments, F/F0 and Z/R are computed and plotted in figures

below. Figure 3.5 shows the results with 2 rotors active, while Figure 3.6 has 4 propellers

on. For both configurations, similar trends are observed. As the vehicle approaches the

ground, F/F0 increases from 1 to 1.2 and higher, which means more thrust is generated

at close proximity to ground. This is an indication of ground effect. An exponential trend

is observed for the 2-propeller case, where the vehicle experiences a 2% increase in thrust

while it is 1.5 times its rotor’s radius away from the ground. On the other hand, the

4-propeller case shows a linear trend, and the vehicle only needs to reach 2.5 times its
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rotor radius to experience the same magnitude of increase in thrust. Models are fitted to

both datasets for comparison. For the 2-rotor case, the proposed model, Equation 1.1, is

used, while a linear model is used for the 4-propeller case. A summary of models used is

given below, and the plots are shown in Figures 3.5 and 3.6.

1. The proposed model for quadcopter from [31], which comes from single rotor ve-

hicle:

F

F0

=
1

1− R2

16Z2

(3.2)

2. Curve fitting using the proposed model for quadcopter with 2 rotors active:

F

F0

=
1

1− R2

26.4Z2

(3.3)

3. Curve fitting using linear model for quadcopter with 4 rotors active:

F

F0

=

−0.0623Z
R

+ 1.1868, if Z
R
< 2.9969

1.0000, otherwise

(3.4)
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Figure 3.5: Ground effect ground experiment with 2 propellers

Figure 3.6: Ground effect ground experiment with 4 propellers
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The models for each case (Equation 1.1, 3.3, and 3.4) are plotted together in Figure

3.7 for comparison. Obviously, the single rotor case and the 2-rotor case show a similar

exponential pattern, but the 2-rotor case experiences less ground effect, which may be

caused by the interaction of rotors’ airflow. However, the 4-rotor case shows a linear

relationship, which is different from the others. This discrepancy can be caused by the

difference in rotor’s spinning direction. All active rotors spin in the same direction for

the single rotor and the 2-rotor case (M1 and M3, see Figure 2.1), while two pairs of

rotors spin in opposite direction for the 4-rotor case (see Figure 2.1). To ensure that

the discrepancy is caused by the actual aerodynamics not the experiment, a flight test is

proposed to verify the data collected in the experiment.

Figure 3.7: Comparison of different ground effect models
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3.3.3 Flight Test

In the test, a quadcopter takes off outside of the ground effect region, where Z/R ≈ 12.

Then, the vehicle descends to the ground through multiple steps. During each step, the

vehicle hovers for 10 seconds at certain altitude. The vehicle trajectory from the test is

shown in Figure 3.8. During the test, these parameters are recorded: the motor’s PWM

control signal, altitude, and weight of the vehicle. Note that only the data from the second

half of the 10-second duration is used to ensure the vehicle is hovering without vertical

motion, such that no net force acts on the vehicle and thrust equals to vehicle’s weight.

Using this information, the thrust with ground effect, F , is the weight of the vehicle; the

thrust without ground effect, F0, is calculated using the recorded motor control signal

and the theoretical thrust equation, Equation (2.1). Then, F/F0 and Z/R are computed

and compared with ground test result, which is shown in Figure 3.9. Both flight test

and ground test data show a linear pattern although the flight test result is offset a bit

vertically from the ground test. This is probably due to underestimated vehicle weight or

overestimated thrust from motors.

Figure 3.8: Flight test vehicle height from ground
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Ground Effect Experiment
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Figure 3.9: Ground test vs Flight test
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Chapter 4

Control Architecture

Figure 4.1: Control architecture overview

The goal of the proposed controller is to mitigate ground effect while providing way-

point following for a quadcopter. The linearized quadcopter dynamic model from Chapter

2 is used to simplify control design, since high maneuverability is not the focus of this con-

troller. Looking at the dynamic model, it is obvious that attitude and position dynamics

are decoupled. Therefore, a multilayer control architecture along with a MRAC is pro-

posed to solve the waypoint following problem. It consists of a attitude (inner) loop and

a position (outer) loop. First, the LQR technique is used to design a full state feedback

controller to stabilize the quadcopter and reject disturbance, and a simple feedforward

controller is used for attitude command tracking. Then, PID controllers are designed

separately for x, y, and altitude. Since ground effect has a huge effect on altitude when

the vehicle operates in close proximity to ground, a MRAC is added to altitude PID con-

troller. The overall structure is illustrated in Figure 4.1. A desired position [meter] and

heading [radian] (x, y, z, ψ) is given to the position controller, which outputs the desired
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Tait-Bryan angles [radian] and thrust [PWM] (ψ, θ, ψ, P ). Then, the attitude controller

takes those outputs and computes the motor’s control signals [PWM], and they are sent

to the motor. In the following sections, details for each controller are provided.

4.1 Attitude Control

The attitude controller consists of a LQR and a feedforward controller. First, a full

state feedback controller is designed using the LQR technique. Then, feedforward gains

are computed based on the closed loop model from the LQR. The full state feedback

controller takes the vehicle’s current Tait-Bryan angles (φ, θ, ψ) and body angular rate

(p, q, r) as inputs and outputs the motors’ control signals. On the other hand, the

feedforward controller takes attitude and thrust commands (φc, θc, ψc, Pc) as inputs and

outputs the motors’ control signals as well. By adding both outputs, the total control

outputs are generated as shown in Equation (4.1). Figure 4.2 provides an illustration for

the general structure.

LQR

Feedforward
Controller

∑
PWM

ɸc, θc, Ḟc, Tc

p, q, r, 
ɸ, θ, Ḟ

Figure 4.2: Overview of Attitude controller

u = ulqr + ufwd (4.1)
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4.1.1 LQR

Consider a system in the following form, and let x be the state vector, u be the input

vector, and A, B, C, D be system dependent matrices.

ẋxx = Axxx+Buuu

yyy = Cxxx+Duuu
(4.2)

Define a quadratic cost function which depends on system states and control inputs.

J =

∫ ∞
0

(
xxxTQxxx+ uuuTRuuu

)
dt (4.3)

where the cost weight matrices (Q, R) are

Q = QT ≥ 0 and R = RT ≥ 0 (4.4)

The LQR algorithm minimizes the quadratic cost function, which gives a controller

that rejects disturbance with minimal control effort. Given that the system (A, B, C,

D) is controllable and observable and the cost weight matrices (Q, R) are provided, the

resultant feedback control law is

uuulqr = −Klqrxxx (4.5)

where

Klqr = R−1BTP (4.6)

and P is found by solving the Riccati equation.

ATP + PA+Q = 0 (4.7)

By combining Equation (4.2) and (4.6), the closed loop model is shown in Equation

(4.8). Notice that the closed loop equations do not have a command tracking term,

ycmd, since LQR is a full state feedback controller, which rejects disturbance but not

necessarily tracks a command. Although integral feedback terms can be added to provide

such capability, a simple attitude controller is desired for embedded system. Therefore, a

feedforward controller is chosen for command tracking.

ẋxx = (A−BKlqr)xxx

yyy = (C −DKlqr)xxx
(4.8)
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4.1.2 Feedforward

The feedforawrd controller takes a command vector, ycmdycmdycmd =
[
φc θc ψc Pc

]
. Then, it is

multiplied by a constant 4-by-4 matrix, Mru, to map the commands to PWM signals for

motors, ufwdufwdufwd. This relationship is described in Equation (4.9).

ufwdufwdufwd = Mruycmdycmdycmd (4.9)

where

Mru =


−kφ kθ kψ kthrust

−kφ −kθ −kψ kthrust

kφ −kθ kψ kthrust

kφ kθ −kψ kthrust

 (4.10)

By combining Equation (4.1), (4.2), (4.5), and (4.9), the closed loop attitude model

is shown below.

ẋxx = (A−BKlqr)xxx+BMruycmdycmdycmd

yyy = (C −DKlqr)xxx+DMruycmdycmdycmd

(4.11)

Define C as a 3× 6 matrix and D as a 3× 4 zero matrix, such that the system outputs

are Tait-Bryan angles, yyy =
[
φ θ ψ

]
. Notice that the attitude dynamic equations does

not include thrust (P ), so it is just pass-through (kthrust = 1).

C =
[
03x3 13x3

]
and D = 03x4 (4.12)

Then, Equation (4.11) becomes

ẋxx = (A−BKlqr)xxx+BMruycmdycmdycmd

yyy =
[
03x3 13x3

]
xxx

(4.13)

To satisfy the command following requirement, the closed loop DC gains from com-

mands to system outputs must be 1. To find the DC gains, Equation (4.13) is converted

to a transfer function matrix using the equation below:

Y

Ycmd
(s) = G (s) = Cref (sI − Aref )Bref (4.14)
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where

Aref = A−BKlqr

Bref = BMru

Cref =
[
03×3 13×3

] (4.15)

Then, the transfer functions for each system output (φ, θ, ψ) are extracted and the

coupled terms are neglected for simplicity. The transfer function for roll (Gφ) comes from

the first row and first column of the transfer function matrix (G (s)). For others, it is

summarized below:

Gφ = G (s) (1, 1)

Gθ = G (s) (2, 2)

Gψ = G (s) (3, 3)

(4.16)

Lastly, the feedforward gains are found by inverting the DC gains of the closed-loop

transfer functions, such that the DC gains are 1.

kφ =
1

DCgain (Gφ)

kθ =
1

DCgain (Gθ)

kψ =
1

DCgain (Gψ)

kthrust = 1

(4.17)

4.1.3 Design

The system matrices (A and B) come from the linearized attitude dynamic equations,

Equation (2.28), (C and D) come from Equation (4.12), the system state vector is x =[
p q r φ θ ψ

]T
, and the input vector is u =

[
m1 m2 m3 m4

]T
. Notice that

there are 6 states and 4 inputs, so Q and R are selected as a 6 × 6 and a 4 × 4 identity

matrix respectively. They are then used in the Matlab model created in Chapter 2. Step

inputs are used to excite the system, and its performance is recorded in terms of crossover

frequency, steady state error, and overshoot. The cost weight matrices (Q, R) are updated

after each trial, and the one with the best performance is selected for flight test, which
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is shown in Equation (4.18). Notice that Rlqr is very small compared to Qlqr, such that

penalty for high control effort is limited and high motor control signal (PWM signal ranges

from 0 to 65536) can be generated for stabilization. Furthermore, the crossover frequency

is at 2.87 rad/s for roll and pitch loop, while the yaw loop is slower at 1.81 rad/s as shown

in Figure 4.3 and 4.4.

Qlqr = 100

13×3 03×3

03×3 10 (13×3)

 and Rlqr = 10−614×4 (4.18)
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Figure 4.3: Frequency response for closed roll/pitch loop, T: complementary sensitivity
and S: sensitivity
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Figure 4.4: Frequency response for closed yaw loop, T: complementary sensitivity and S:
sensitivity
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Then, the feedback gain matrix is found by solving Equation (4.6) and (4.7).

Klqr =


−kp kq kr −kφ kθ kψ

−kp −kq −kr −kφ −kθ −kψ
kp −kq kr kφ −kθ kψ

kp kq −kr kφ kθ −kψ

 (4.19)

where

kp = 5258.0500 kq = 5275.6847 kr = 8920.3470

kφ = 15811.3883 kθ = 15811.3883 kψ = 15811.3883

Using the results above from LQR and Equation (4.17), the feedforward gain matrix

is

Mru =


−kφ kθ kψ kthrust

−kφ −kθ −kψ kthrust

kφ −kθ kψ kthrust

kφ kθ −kψ kthrust

 (4.20)

where kφ = 15811.3883, kθ = 15811.3883, kψ = 15811.3883, and kthrust = 1

And the outputs of the attitude controller are

uuu = Klqrxxx+Mruycmdycmdycmd (4.21)
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4.2 Position Control

MRAC

PID
controller

∑
xerr, yerr, zerr, Ḟc

zc, z, vz

ɸc, θc, Ḟc, Tc

Figure 4.5: Overview of position controller

The position controller includes a PID controller and a MRAC. The PID controller

takes position errors and commanded yaw angle (xerr, zerr, zerr, ψc) as inputs and outputs

desired Tait-Bryan angles and thrust (φc, θc, ψc, Tc). The MRAC takes commanded alti-

tude, measured altitude, and measured vertical velocity (zc, z, v̇z) as inputs and outputs

desired thrust (Tc). Then, outputs from each controller are added together, see Equation

(4.22), and the result is the command for the inner loop as shown in Figure 4.5 above.

uz = upid + uadaptive (4.22)

4.2.1 PID

A PID position controller is an error feedback controller, where error is multiplied by

a constant gain, Kp; accumulated error is multiplied by Ki; rate of change in error is

multiplied by Kd, as described in Equation (4.23). Error (ex, ey, ez) is defined as the

difference between the commanded and the measured position as shown in Equation

(4.24). Notice that the position error fed to the PID controller is in Vehicle-1 frame,

because the heading of the vehicle does not always align with the unit vector, xe, in

inertial frame, which causes tracking error and a stabilization issue. To compute error

in Vehicle-1 frame, it is first computed in inertial frame. Then, it is rotated to Vehicle-1
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frame using equation from Section 2.2.4, which is shown in Equation (4.25)

uuu = Kpeee (t) +Ki

∫ t

0

eee (τ) dτ +Kd
deee (t)

dt
(4.23)

where eee =
[
ex ey ez

]T
and uuu =

[
φc θc ψc Tc

]T
.

ex = xc − x

ey = yc − y

ez = zc − z

(4.24)


ev1
x

ev1
y

ev1
z

 = Rv1
v (ψ)


evx

evy

evz

 (4.25)

Design

To find the gains, (Kp, Ki, Kd), a simplified position dynamic model is created in Matlab

SimulinkTM. The model includes linearized position dynamic equations from Equation

(2.29), a second order actuator model (bandwidth = 10Hz, damping ratio = 1.0), and

PID controllers. The inner loop is neglected in this model, because the DC gain of inner

loop is 1 if the outer loop has a lower crossover frequency than the inner loop by 5 to 10

times according to successive loop closure technique[35].

Crossover frequency is chosen to be 0.3 rad/s, which is about 1/10 of the inner loop,

and it is desired to have zero steady error and zero overshoot. Using MatLab’s PID tuner,

the PID gains are tuned and shown in Table 4.1. Then, the gains are implemented in

the full model from Chapter 2 and Crazyflie. During flight test, the performance of the

control is satisfied during the mission, but it has huge steady state error during takeoff

and landing. Therefore, a model reference adaptive controller is included in altitude loop

to mitigate ground effect.
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Table 4.1: PID Position Controller Gains

Kp Ki Kd

X and Y 0.388869225 -0.074870430 -0.504936570

Z 42692.2 8219.7 55434.8

4.2.2 Model Reference Adaptive Control

A model reference adaptive controller (MRAC) has adjustable parameters and a mech-

anism to update those parameters on-line, which ensures that the system states follows

the model states with the presence of uncertainties and external disturbance. Since this

thesis focuses on the application of MRAC, only a brief description on the equations used

to design a MRAC for altitude loop is provided in the following sections. However, details

can be found in [36].

Consider a system that contains unknown matched system uncertainty, fff (xxx).

ẋ̇ẋx = Axxx+B (uuu+ fff (xxx)) (4.26)

Assuming that fff (xxx) can be written as a linear combination of N known locally

Lipschitz-continuous basis functions, ΦΦΦ (xxx), with unknown constant coefficients, ΘΘΘ.

fff (xxx) = ΘΘΘTΦΦΦ (xxx) (4.27)

Then, a reference model in the following form is chosen for desired performance.

ẋrefẋrefẋref = Arefxrefxrefxref +Brefycmdycmdycmd

ẏrefẏrefẏref = Crefxrefxrefxref +Drefycmdycmdycmd

(4.28)

Then, defining state tracking error as the difference between the system states and the

model states as

eee (t) = xxx (t)− xrefxrefxref (t) (4.29)

Then, the control law is chosen to cancel the systen uncertainty.

uadpuadpuadp = −Θ̂̂Θ̂ΘTΦΦΦ (xxx) (4.30)

where Θ̂̂Θ̂Θ is the estimated unknown constant coefficients for the matched uncertainty.
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A radially unbounded quadratic Lyapunov function candidate is selected as the fol-

lowing:

V (e,∆Θ) = eTPe+ trace
(
∆ΘTΓ−1

Θ ∆Θ
)

(4.31)

where ∆Θ = Θ̂−Θ, P is the solution of the algebraic Lyapunov equation, PAref+ATrefP =

−Q with Q = QT > 0, and ΓΘ is rate of adaption.

By differentiating the equation above on both sides, V̇ is found, the following condition

must be met to ensure Lyapunov stability, V̇ < 0. This adaptive law is updated on-line

at each time step.

˙̂
Θ = ΓΘΦeeeTPB (4.32)

The equations used to implement the MRAC for altitude loop is summarized below.

Table 4.2: Summary of MRAC

Open loop ẋ̇ẋx = Axxx+B
(
uuu+ ΘTΦΦΦ (xxx)

)
Reference model ẋrefẋrefẋref = Arefxrefxrefxref +Brefycmdycmdycmd

State tracking error eee = xxx− xrefxrefxref

Lyapunov equation PAref + ATrefP = −Q

Adaptive law
˙̂
Θ = ΓΘΦeeeTPB

Control input uadpuadpuadp = −Θ̂TΦ (xxx)

Design

Reference Model

System identification is used to obtain the reference model, so that the closed loop system

performs like the PID altitude controller. As a result, the system behaves consistently with

or without the presence of ground effect. System states are recorded during flight tests,

where the vehicle takes off and hovers at different heights. Then, the data is imported to

MatlabTM System Identification software. Notice that data during takes off and landing

is removed, so the model obtained does not account for ground effect. Then, second

order state space models are fitted to each dataset, and the models are cross validated by

other datasets. Finally, the model that has the least error is selected, which is shown in
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Equation (4.33).  ż
v̇z

 =

 0 1

−5.416 −7.027

 z
vz

+

−0.1145

6.273

 zcmd (4.33)

Uncertainty model

A set of system states dependent functions, ΦΦΦ (xxx), are selected, and a linear combination of

those functions, Θ̂̂Θ̂ΘTΦΦΦ (xxx), models the ground effect. Notice that ΘΘΘ is a vector of unknown

constants, which are estimated on-line by the adaptive law. In this thesis, two different

sets of functions are used: 1) polynomial functions and 2) radial basis functions.

1. Polynomial functions

In Chapter 3, the ground effect experimental results show a linear pattern, which is

in the form of F = θ1Z + θ0. Therefore, the regressors are selected

Φ (xxx) =
[
Z 1

]
(4.34)

where Z is the distance from the ground.

Simulation is used to pick the right Q and ΓΘ, so the system states follow the

reference states without oscillation. The result is shown below.

ΓΘ = 10−312×2

Q =

100 0

0 1

 (4.35)

2. Radial basis functions

A radial basis function (RBF) is a real-valued function, which satisfies φ (x, c) =

φ (|x− c|). In other words, a RBF is symmetric about its center, c. A linear

combination of those functions has been widely used to approximate given functions

in different fields [37] [38]. Thus, a series of Gaussian RBFs, Equation (4.36), along

with a basis term are used to approximate the ground effect.

φ (xxx, c) = e−ε
2(x−c)2 (4.36)
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The RBFs are chosen to have a center at 0 m, -0.2 m, -0.4 m, -0.6 m, -0.8 m, and

-1.0 m to cover the whole flight envelop, and ε is chosen to be 6.67. The regressors

are shown in Equation (4.37), and the RBFs are plotted in Figure 4.6

Φ (xxx) =
[
φ(z,0) φ(z,−0.2) φ(z,−0.4) φ(z,−0.6) φ(z,−0.8) φ(z,−1.0) 1

]
(4.37)
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Figure 4.6: A set of radial basis functions used to approximate the ground effect function

Then, the same procedure is followed, and the result is

ΓΘ = 10−317×7

Q =

100 0

0 1

 (4.38)
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Chapter 5

Experiment Results

In this chapter, the control architecture proposed in the previous chapter is implemented

on the test platform, Crazyflie 2.0. Then, takeoff/landing tests are performed to demon-

strate performance impact on PID controller due to ground effect and how MRAC im-

proves the performance.

5.1 Software Architecture

The system composes of a Crazyflie and a ground station, which are connected through

a radio channel using CrazyRadio. Figure 5.1 illustrates the overview of the system. The

inner loop control algorithm described in previous chapter is implemented in C and runs

on-board the Crazyflie, which includes a IMU data processing unit, a state estimator

(which is a complementary filter), and a attitude controller. The IMU data processing

unit and the state estimator are provided by the stock firmware running at 1000Hz, while

the attitude controller from previous chapter is implemented in C and runs at 500Hz.

On the other hand, the outer loop logic is implemented in the ground station, which

has a Robot Operating System (ROS) installed to handle communication with Crazyflie

and between components. In the outer loop, it includes a position controller, a waypoint

generator, and Optitrack. The position controller described in Chapter 4 is implemented

in C and runs at 200Hz. The waypoint generator creates position command based on

current location and an internal clock. Then, it is sent to the position controller. The

waypoint generator is implemented in Python and runs at 50Hz. Lastly, a motion capture
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system, OptiTrack, is utilized to gather vehicle’s position data. The source is available at

https://github.com/fjctp/crazyflie_mrac.

Figure 5.1: System overview

5.2 Experiment

An experiment is designed to study the impact on the performance of a position controller

due to ground effect. During the experiment, the vehicle operates within the ground effect

region, which is <10cm according to Chapter 3, and the vehicle takes off and lands for

multiple times. The system states are recorded for analysis. Then, the whole experiment

is repeated with different position controllers, which includes a PID controller, a PID

controller with a MRAC using linear uncertainty model, and a PID controller with a

MRAC using RBFs.
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5.3 Results

Data collected during the experiment is resampled at 50Hz for analysis, because sensors

run at different frequencies. Then, the vehicle’s altitude is plotted in Figure 5.2 along with

the commanded altitude and the reference altitude, where zero is the ground. Clearly,

the adaptive controllers (red and yellow solid line) perform better than the PID controller

(blue solid line). Both adaptive controllers reach the target altitude and track the reference

model closely. However, the vehicle with a PID controller does not reach the target

altitude during takeoff, and it does not touch-down when landing. Although a PID

controller is robust to unmodeled dynamic (ground effect), it loses its performance. As a

result, a manual intervention is needed at the end of the experiment to bring down the

vehicle safely, which is shown in Figure 5.2.

Figure 5.2: Vehicle’s height above ground using different control algorithms (blue solid
line: PID, red solid line: MRAC with linear model, yellow solid line: MRAC with RBFs)

To provide a better comparison between the controllers, Figure 5.2 is sliced into dif-

ferent sections when there is a change in command. For example, the first section is from

0 to 16 seconds, and the second section is from 16 to 31 seconds. Then, each section is

identified as either a takeoff or landing operation depending on the command. For each

operation, averages and standard derivations are computed at each time step to gener-

ate an average trajectory. The resultant curves are shown in Figures 5.3 (takeoff) and
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5.4 (landing). Besides, performance indices for each section are also extracted, including

steady state error with respect to the step command (SSE), mean squared error with

respect to the reference model (MSE, using Equation (5.1)), rise time (time it takes for

the vehicle’s altitude to rise from 10% to 90% of the commanded altitude), and overshoot.

Then, the averages and standard derivations are shown in Tables 5.1 and 5.2. Note that,

the PID controller does not have a rise time and overshoot, because the vehicle does not

reach 90% of the target altitude. The PID controller also does not have a mean square

error, since it is not tracking the reference model.

MSE =
1

N

∑
(r − z)2 (5.1)

where r is the referenced altitude, z is the vehicle’s altitude, N is number of time steps.

From Tables 5.1 and 5.2, MRACs clearly outperform PID as MRACs has less steady

errors. Among the MRACs, MRAC with RBFs tracks the reference model better consid-

ering that it has a lower mean squared error. Furthermore, it responds faster and with less

overshoot. Although MRAC with RBFs provides better performance, seven parameters

are estimated on-line. On the other hand, only two parameters are estimated on-line for

the MRAC using the linear model, and it still provides a significant improvement over the

PID controller. It may not take significantly more computational power to estimate seven

parameters on-line than two parameters on a computer, but it matters on an embedded

system, which has limited power.

Table 5.1: Performance index for takeoff

PID PID w/ MRAC

(Linear)

PID w/ MRAC

(RBF)

SSE (cm) 1.87 ± 0.19 0.19 ± 0.08 0.21 ± 0.02

MSE (10−4) — 1.10 ± 0.43 0.80 ± 0.44

Rise time (sec) — 5.06 ± 0.58 3.48 ± 0.22

Overshoot (%) — 6.14 ± 1.80 5.85 ± 0.92
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Table 5.2: Performance index for landing

PID PID w/ MRAC

(Linear)

PID w/ MRAC

(RBF)

SSE (cm) 1.81 ± 0.04 0.39 ± 0.02 0.37 ± 0.04

MSE (10−4) — 1.17 ± 0.09 0.68 ± 0.03

Rise time (sec) — 6.42 ± 0.20 4.58 ± 0.13

Overshoot (%) — — —

Considering the average trajectories shown in Figures 5.3 and 5.4, PID performs con-

sistently in general while there are fluctuations for MRACs. The large variance for MRACs

happens during takeoff, which begins at 0 second and lasts for 4 seconds in Figure 5.3. To

better understand the cause, the takeoff sections in Figure 5.2 are plotted on top of each

other, and the vehicle altitude is shown in Figure 5.5. Clearly, the deviation is caused by

the initial takeoff, where the vehicle response much faster than sequential takeoffs. This is

caused by not resetting the adaptive gains properly after each touchdown, which is shown

in Figure 5.6.
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Figure 5.3: Average takeoff trajectories with different control algorithms (top: PID, mid-
dle: MRAC with linear model, bottom: MRAC with RBFs)
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Figure 5.4: Average landing trajectories with different control algorithms (top: PID,
middle: MRAC with linear model, bottom: MRAC with RBFs)
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Figure 5.5: Takeoff trajectories with different control algorithms (top: PID, middle:
MRAC with linear model, bottom: MRAC with RBFs)
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Figure 5.6: Adaptive gain bias term shows the adaptive controller is not properly reset
after each touch down. (Note: only the bias term is shown to save space, but other gain
terms also show a similar trend)
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Chapter 6

Conclusion

In this thesis, a study of ground effects on a quadrotor aerial vehicle was presented.

Experimental results showed that thrust generated by the rotors increased linearly as the

vehicle got closer to the ground, which was different from the single rotor vehicle’s ground

effect model used in other research. Furthermore, a quadcopter experienced ground effects

sooner than the single rotor model predicted, and the ground effect was weaker when the

vehicle was at close proximity to the ground.

Then, a control architecture that utilizes a model reference adaptive controller was

proposed to mitigate ground effect. Different position controllers were implemented on

a physical system, which included a Crazyflie 2.0 and a computer. The controllers used

in this study included a PID controller, a model reference adaptive controller (MRAC)

with a linear ground effect model, and a MRAC that uses a set of radial basis functions

(RBF), plus a bias term to approximate the ground effect function. The quadcopter took

off and landed within the ground effect region multiple times, and its performances were

compared. From the flight tests, the MRACs outperformed the PID controller. Among

the MRACs, the one with RBF tracked the reference model better with less mean square

error. It also responded quicker with less rise time. Furthermore, the MRAC with RBF

performed more consistently compared to the one using linear ground effect model.
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